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COMMENT 

Multiplicity of infinite clusters in percolation above six 
dimensions 

Lucilla de Arcangelis? 
Institute for Theoretical Physics, Unikersity of Cologne, Cologne 41, West German) 

Received 1 5  December 1986 

Abstract. We present Monte Carlo simulations of site percolation near the percolation 
threshold in five to seven dimensions. In contrast to lower dimensionalities, more than 
one spanning cluster is found in a system of size L" for d > 6. These results confirm 
Coniglio's prediction that the breakdown of hyperscaling ford  > 6 is caused by a multiplicity 
of infinite clusters at the percolation threshold. 

The critical properties of the percolation transition have been widely studied (Essam 
1980, Stauffer 1985). It is known that, as the concentration p approaches p c ,  the 
connectedness length diverges and an infinite cluster spanning the whole system 
appears. It has been generally believed that only one such infinite cluster exists at the 
percolation threshold. This uniqueness was known to hold in two dimensions (Harris 
1960, Fisher 1961). Further, some general heuristic arguments were given (Kikuchi 
1970) regarding the existence of an unique spanning cluster of each atomic species in 
a random alloy of A and B atoms. Only recently Newman and  Schulman (1981) 
rigorously proved that, at  the onset of percolation, the only possibilities for the number 
of infinite clusters were either zero, one or  infinity, where, in the latter case, the clusters 
would have zero density (Aizenman 1985). 

Contrary to the numerous computer simulations of percolation in two and three 
dimensions, there is no numerical evidence for the behaviour of the number of spanning 
clusters in higher dimensionality. The need for numerical results has become even 
more striking due to recent discussions and  subsequent predictions (Aharony et al 
1984, Coniglio 1985) on the fractal properties of the infinite cluster above the upper 
critical dimension d,. Let us, in fact, consider the mass of this infinite cluster; this is 
self-similar for length scales L<< 6, and scales as M - L" with an  exponent 

D = d  - P I U .  (1) 
This fractal dimension D expresses the fact that a density L-O of the total volume 
Ld of sites belongs to the spanning cluster. By introducing the hyperscaling relation 
2 - a  = d = 2P + y ,  it is also possible to rewrite the fractal dimension in (1) as 

( 2 )  
From field theory we know that the upper critical dimension for percolation is d ,  = 6 
(Toulouse 1974, Harris et a1 1975); above this dimension the critical exponents assume 
their mean field value (i.e. -a = P  = y =  1 and v =:I. Therefore for d > 6  equations 
(1) and ( 2 )  would lead to two different values for the fractal dimension, D = d - 2 and 
D = 4 .  

D = ( P  + Y )/ U. 
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Aharony et a1 (1984) were the first to notice that the breakdown of (1) was caused 
by the failure of hyperscaling. Subsequently Coniglio (1985) gave a geometrical 
interpretation to this problem. The hyperscaling relation is in fact equivalent to the 
assumption that, at the percolation threshold, only a single spanning cluster is present 
in a volume Ld. Therefore the breakdown of hyperscaling above six dimensions would 
lead to the conclusion that a critical number of spanning clusters N L  - L"' is present 
at p = p c ,  each with a mass that scales as M - L D  where D = 4. As a consequence the 
total mass of all the spanning clusters scales as MI,,- NLLD - Ld-' (Coniglio 1985) 
for d > 6. Below six dimensions, the usual result N L  - 1 is recovered and M = M,,, - LD. 

In this comment we want to test this prediction by Monte Carlo simulation, in 
order to determine if more than one spanning cluster is present in a system at the 
percolation threshold in high dimensions. To this end, we consider a system of Ld 
sites at the nodes of a hypercubic lattice. Each site is present with a probability p and 
missing with a probability (1 - p ) .  Once each configuration is generated, we proceed 
to the analysis of the clusters so obtained for a fixed value of p and to the identification 
of all the possible different clusters spanning the system from the top  hyperplane to 
the bottom one. To d o  so, we generalise the Hoshen and Kopelman (1976) algorithm 
to a system in d dimensions with helical boundary conditions. The main advantage 
of this algorithm, beside being quite efficient (-3.3 ps/si te on the C D C  Cyber 76), is 
that it requires only Ld-' + L d - 2  memory allocations to analyse a system of Ld sites. 
We then studied systems of different sizes, L = 3 ,  4, 5, 6, 20 ( L = 2 0  only in three 
dimensions), in different dimensions ( d  = 3, 5 , 6 , 7 )  and  averaged our data over several 
configurations (respectively 20 000, 3500, 600, 70 configurations for L = 3, 4, 5, 6 in 
d = 7). We considered also a range of several p values about the series estimate for 
the percolation threshold (Gaunt et a1 1976, Gaunt and  Brak 1984). For each system 
size at a given dimension we monitor at the same time the spanning probability R (the 
probability that there exists at least one spanning cluster) and the average number of 
spanning clusters N L  as a function of p .  We can then detect a striking difference in 
the behaviour of N L  below and  above d = 6. 

Whereas N L  is a constant function, approximately equal to one, over the whole 
range of p and for all system sizes for d < 6 (figure l ) ,  N L  exhibits a sharp maximum 
for d > 6 (figure 2). This is located at a value p *  > pE"(L), where p : " ( L ) ,  the effective 
percolation threshold at a given L, is identified with the value of p at which R ( p )  
assumes half of its value. As the system size increases, the maximum becomes sharper 
and moves toward p:"(L) ,  leading to the conclusion that in the limit L+oo the number 
of infinite clusters will go to infinity at the percolation threshold p , ,  and is zero and  
one for p below and above p , ,  respectively, for d = 7. 

At d = 6 the number of spanning clusters N L  has no sharp maximum but shows a 
weak dependence as a function of p ,  which could be interpreted as a logarithmic 
correction at  d = d ,  (see also Aharony et a1 1984). 

The finite-size scaling analysis for the different system sizes in d = 7  is shown in 
figure 3. A log-log plot of the number of spanning clusters against L gives a value of 
the critical exponent equal to 1.63 * 0.30; however, by plotting the quantity log N,/log L 
as a function of l / log  L and extrapolating to the asymptotic value for L +a, we find 
that the exponent, equal to 1.95 if we consider the data points for L = 3 ,  4, 5, goes 
down to the given value 1.63 i f  we also take into account the data for L = 6. Therefore, 
we can conclude that, by analysing larger systems, a lower value of the asymptotic 
exponent could be obtained, which does not exclude the theoretical prediction 
d - 6 = 1 .  
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Figure 1. Average spanning probability ( R )  (0, left-hand scale) and average number of 
spanning clusters (NJ (0, right-hand scale) for 3000 configurations of the system size 
L = 6 in d = 5. The weak dependence of ( N L )  on p is expected to disappear for larger 
system sizes. 
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Figure 2. Average spanning probability ( R )  (0, left-hand scale) and average number of 
spanning clusters (NL) (0, right-hand scale) for 70 configurations of the system size L = 6 
in d = 7 .  The three data points about the maximum of the ( NL) curve are determined from 
270 configurations. The height of the maximum is equal to 7.35 and is located at a value 
of p *  = 0.0925. 
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Figure 3. Log-log plot of the average number of clusters (NJ (O) ,  the sixth root of the 
average mass of a single spanning cluster (M)"' ( x )  and the sixth root of the average 
total mass of all spanning clusters (MLoJ'" (0) against L. 30000, 4500, 1000 and 270 
configurations are considered for the system sizes L = 3 ,  4, 5 and 6. The values of the 
slopes are, respectively, equal to 1.63, 0.62 and 0.87. 

Furthermore, the mass of the average spanning cluster scales with a fractal 
dimension D = 3,74* 0.30 in seven dimensions, in fairly good agreement with the 
predicted mean field value D = 4. Finally, the total mass of all spanning clusters scales 
with a fractal dimension D = 5.19k0.30, in good agreement with the theoretical value 
D = d - 2  = 5 (Coniglio 1985). 

Therefore, our picture is the following: for d < d,, several large clusters can grow, 
as long as p is less than p c ,  and they can indeed interpenetrate with a relative distance 
of the order of 6 but, as p reaches the percolation threshold, all these clusters coalesce 
giving rise to a unique critical cluster spanning the whole system. For d > d,, the N L  
spanning clusters are more fragile string-like chains, made of links and dangling ends, 
and they can interpenetrate each other, without coalescing and keeping a relative 
distance 6 ,  - ( 6 ' d  (Coniglio 1985), even at the percolation threshold. 

We are deeply grateful to D Stauffer and A Coniglio for stimulating discussions. 
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